

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Molecules Designed For Network Memory And Evolution

Chris Gordon-Smith SimSoup Project www.simsoup.info © Chris Gordon-Smith 2012

Presentation To The BioChemIT Workshop

11th International Conference Unconventional Computation and Natural Computation 2012

6 September 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Presentation Objectives

Objectives For This Presentation

- Introduce SimSoup artificial chemistry model and simulator
- Show a 'proof of concept' design for a chemical memory bank implemented using a metabolic network
- Show initial SimSoup results for the design
- Ask: Can a metabolic memory bank be built using real molecules?

SimSoup Model

Molecules Designed For Evolution

Objectives

SimSoup Model

- Network Elements Molecular Structure Joining/Splitting
- Memory Bank Design Overall Network
- Memory Unit Sub-Net Memory Unit Interactions
- Memory Bank Operation Scenario Results
- Conclusions and Prospects

The SimSoup Project and Simulation Model

- The SimSoup project was initiated to investigate non-genetic mechanisms for evolution relevant to the Origin Of Life
- SimSoup is also the name of the artificial chemistry simulator that has been developed^a

^aThe open source code is available at http://www.simsoup.info/SimSoup_Download_Page.html

SimSoup Model Network Elements

Molecules Designed For Evolution

Objectives

- SimSoup Model Network Elements Molecular Structure Joining/Splitting
- Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit
- Memory Bank Operation Scenario Results

Conclusions and Prospects

Three Forms Of Interaction In SimSoup

- $\mathsf{A} + \mathsf{B} \to \mathsf{C} \qquad \qquad \mathsf{D} \to \mathsf{E} \qquad \qquad \mathsf{F} \to \mathsf{G} + \mathsf{H}$
- Three forms of Interaction are possible in SimSoup^a
 - Construction^b: Two Molecules join
 - Transformation^c: A Molecule re-arranges
 - Fission: A Molecule splits
- Interactions combine to form complex reactions

^aConstructions and Fissions in real chemistry can have more products.

^bTermolecular reactions are rare.

^cNot implemented in latest version of SimSoup with molecular structure.

Molecules Designed For Evolution

SimSoup Model Molecular Structure

Objectives

- SimSoup Model Network Elements Molecular Structure Joining/Splitting
- Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions
- Memory Bank Operation Scenario Results
- Conclusions and Prospects

Molecular Structure In SimSoup

- Molecules are rigid two dimensional structures
 - Atoms are placed in a 'board' layout
 - All bond lengths are equal
 - All bond angles are 90° or 180°
 - Each board location can have at most one Atom
 - Each Bond has a Bond Order and a Bond Enthalpy (*bond strength*)
 - Bonds must satisfy valence bonding rules
 - Bonds can be perturbed (strengthened / weakened) by nearby atomic configurations

Molecules Designed For Evolution

SimSoup Model Molecular Structure

Some Molecules Constructed By SimSoup

Objectives SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Joining And Splitting

SimSoup Model

Joining And Splitting Molecule Types

- Molecules Split and Join according to rules analogous to real chemistry
- Joining: According to valence rules. Maximize total bond enthalpy. Atoms cannot overlap^a
- Splitting: Break bonds with least total enthalpy

^aIn the current version of SimSoup, a Mass limitation is in place to limit computation.

The SimSoup Network Is Effectively Unlimited

- Molecule Types and associated Interaction Types are 'discovered' in an open-ended way
- The SimSoup chemical network is effectively unlimited

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design

Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Memory Bank Design

Memory Bank Requirements

- All Molecules and Interactions must exist in the same environment - perhaps in a droplet
- The memory bank must have many alternative states
- The states of the metabolic network must be self maintaining
- Molecules and Interactions supporting different states must not interfere with one-another (no 'side-reactions')

Memory Bank Design

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design

Overall Network

Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Memory Bank Network

- Each Unit:
 - Is activated by a particular Monomer. Eg U₀₁ is activated by M₀₁
 - Extends a Polymer by adding a Monomer. Eg U₀₂ adds M₀₁ to Polymer P₀₁
 - Uses Polymers produced by its predecessor. (Except first unit in each series, which uses length 1 'Polymer' $\rm M_{s0}$ from food-set)
 - Splits a 'Closed Dimer' (food) to produce two activating Monomers
- The excess ensures the unit remains active
- There are 10¹⁰ possible states. State 4444456789 is shown

Memory Bank Design Molecular Structures

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design

Overall Network

Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Monomer M_{01} Anatomy

- This monomer activates memory bank unit U₀₁
- The various recesses and protuberances support the 'lock and key' mechanism that ensure that Molecule Types in different memory units do not interfere

Memory Bank Design Molecular Structures

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design

Overall Network

Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Closed Dimer D₀₁

| □ ▶ ◀ 🗇 ▶ ◀ 볼 ▶ ◀ 볼 ▶ – 볼 – ∽ ੧ <

Molecules Designed For Evolution

Memory Bank Design Molecular Structures

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design

Overall Network

Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Polymer P₀₁

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ ∽ 의 < C

Memory Bank Design Molecular Structures

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design

Overall Network

Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Memory Bank Design Memory Unit Sub-Network

Molecules Designed For Evolution

Objectives

- SimSoup Model Network Elements Molecular Structure Joining/Splitting
- Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions
- Memory Bank Operation Scenario Results

Conclusions and Prospects

Memory Unit Sub-Network

$P_{s,p-1}$	$+ M_{sp}$	$\to P_s$, C	1
n ''	D Î	D D		~

$$P_{sp} + D_{sp} \rightarrow P_{sp}D_{sp}$$
 C2

$$P_{sp}D_{sp} \rightarrow P_{sp}M_{sp} + M_{sp} ~~ \text{F3}$$

$$P_{sp}M_{sp} \rightarrow P_{sp} + M_{sp} \qquad \mbox{F4}$$

Two State Memory Unit: Once Activated It Stays Active

- $\bullet \ \ \, \text{Overall scheme: } P_{s,p-1} + D_{sp} \quad \ \ \frac{M_{sp}}{P_{sp}} \quad P_{sp} + M_{sp}$
- P_{s,p-1} and D_{sp} are 'food'
- M_{sp} activates memory unit. Excess keeps unit active
- P_{sp} is input to next memory unit
- Limitation: This version of unit is not switchable^a

^abut evolution is supported

Memory Bank Design Memory Unit Interactions

Construction C1 - Polymerisation: $M_{00} + M_{01} \rightarrow P_{01}$

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Memory Bank Design Memory Unit Interactions

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network Memory Unit Sub-Net Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Construction C2: The Dimer Is Weakened

Molecules **Designed For**

Evolution

Objectives

Design Overall Network

Memory Unit Interactions

Operation Scenario Results

Network Elements Molecular Structure Joinina/Splittina

Memory Bank Design Memory Unit Interactions

Closeup of P₀₁D₀₁

Conclusions and Prospects

Perturbium-Perturbium bond is weakened by nearby Metal Atoms

$> \prec$

Memory Bank Design Memory Unit Interactions

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Dimer Splitting

Memory

Molecules Designed For Evolution

N N

Objectives

- SimSoup Model Network Elements Molecular Structure Joining/Splitting
- Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions
- Memory Bank Operation Scenario Results
- Conclusions and Prospects

Memory Bank Design Memory Unit Interactions

An Additional Monomer Is Released

▲ □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■

Memory Bank Operation

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation

Scenario Results

Conclusions and Prospects

In This Section...

Results of a SimSoup run demonstrating four states in Series 0 of the memory bank

Memory Bank Operation Model Scenario

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design

Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation

Scenario

Results

Conclusions and Prospects

Simulation Setup

- Food Every 10 seconds, add:
 - 400 Molecules of M₀₀
 - 200 Molecules of each of $D_{01}, D_{02} \text{ and } D_{03}$
- Leakage: At each timestep, each Molecule has removal probability of 0.001
- One Molecule of each of M_{01} , M_{02} and M_{03} is added at t = 10000, 30000, and 50000 respectively

Memory Bank Operation Results

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Time Series Plots Of M_{00} and Series 0 Polymers

(□▶ ◀륨▶ ◀콜▶ ◀콜▶ 콜 ∽ 잇٩?

Memory Bank Operation Results

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario

Results

Conclusions and Prospects

Reactor Overview Plots

- In the P₀₃ state, there are about 50,000 Molecules, and over 600 Molecule Types
- The network is more complex than intended 'by design', but this is not disrupting the operation

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Conclusions And Prospects

Conclusions

- The memory bank design supports 10¹⁰ states
- Preliminary results demonstrate the basic operation
- Tests so far showed only a limited number of states

Prospects

- Extend the design to make the memory unit switchable
- Test for a large number of states
- Remove the mass limitation on Constructions
- Transfer to BioChemIT?
 - Molecular structures would probably be completely different
 - Switching would be needed

Molecules Designed For Evolution

Objectives

SimSoup Model Network Elements Molecular Structure Joining/Splitting

Memory Bank Design Overall Network

Memory Unit Sub-Net Memory Unit Interactions

Memory Bank Operation Scenario Results

Conclusions and Prospects

Comments / Questions?

(□) 4 @) 4 트) 4 ⊡) 4 @)

$\rightarrow \prec$

Memory Bank Operation Results

Molecules Designed For Evolution

Objectives

- SimSoup Model Network Elements Molecular Structure Joining/Splitting
- Memory Bank Design Overall Network Memory Unit Sub-Net Memory Unit Interactions
- Memory Bank Operation Scenario Results

Conclusions and Prospects

Manhattan Plot

Manhattan Plot

- Horizontal axis is 'current' time
- Vertical axis is time before current time
- A dark point indicates a time at which the composition of Molecule Types is close to that at the earlier time
- The dark triangles represent periods of stable Molecular composition